Partitioning a Weighted Graph to Connected Subgraphs of Almost Uniform Size
نویسندگان
چکیده
Assume that each vertex of a graph G is assigned a nonnegative integer weight and that l and u are nonnegative integers. One wish to partition G into connected components by deleting edges from G so that the total weight of each component is at least l and at most u. Such an “almost uniform” partition is called an (l, u)-partition. We deal with three problems to find an (l, u)-partition of a given graph. The minimum partition problem is to find an (l, u)-partition with the minimum number of components. The maximum partition problem is defined similarly. The p-partition problem is to find an (l, u)-partition with a fixed number p of components. All these problems are NP-complete or NP-hard even for series-parallel graphs. In this paper we show that both the minimum partition problem and the maximum partition problem can be solved in time O(un) and the p-partition problem can be solved in time O(pun) for any series-parallel graph of n vertices. The algorithms can be easily extended for partial k-trees, that is, graphs with bounded tree-width.
منابع مشابه
Partitioning a Multi-weighted Graph to Connected Subgraphs of Almost Uniform Size
Assume that each vertex of a graph G is assigned a constant number q of nonnegative integer weights, and that q pairs of nonnegative integers li and ui, 1 ≤ i ≤ q, are given. One wishes to partition G into connected components by deleting edges from G so that the total i-th weights of all vertices in each component is at least li and at most ui for each index i, 1 ≤ i ≤ q. The problem of findin...
متن کاملPartitioning a graph of bounded tree-width to connected subgraphs of almost uniform size
Assume that each vertex of a graph G is assigned a nonnegative integer weight and that l and u are nonnegative integers. One wishes to partition G into connected components by deleting edges from G so that the total weight of each component is at least l and at most u. Such an “almost uniform” partition is called an (l, u)-partition. We deal with three problems to find an (l, u)-partition of a ...
متن کاملPartitioning Generic Graphs into K Balanced Subgraphs
Graph partitioning is a classical graph theory problem that has proven to be NP-hard. Most of the research in literature has focused its attention on a particular case of the problem called the graph bisection problem, where k = 2, such that the parts have approximately equal weight and minimizing the size of the edge cut. In this article, we describe how to obtain balanced partitioning on a gi...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملDistinct edge geodetic decomposition in graphs
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004